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LETTER TO THE EDITOR 

Persistent fluxon current via the Aharonov-Casher effect in 
one-dimensional mesoscopic rings: continuum model 

Jim-Xin B u t ,  2 D Wangt and Qin-Wei Shit 
f Department of Physics, University of Hong Kong. Pokfulm Road, Hong Kong 
1 Department of Physics. Hong Kong University of Science and Technology, Clear Water 
Bay, Hong Kong 

Received 30 August 1994 

Abstract. By extending Lieb and Liniger’s Bose gas analysis IO many hardcore bosons confined 
to a one-dimensional mesoscopic ring in the presence of AharonovSasher flux (AC), persistent 
fluxon currents are investigated for the fint time, and are found to be periodic in the AC flux 
with period a,, = hefe. The interesting mesoscopic parity effects due to evenness or oddness 
of the particle number N are discussed. More importantly, it is demonsuated wactly thaf, in 
the absence of the external Ac flux. whelher a self-sustained fluxon cumnt exists depends only 
up00 the choice of the boundary condition. 

Topological effects in quantum-mechanical systems are manifested through the generation 
of relative phases which accumulate on the wavefunction of a particle moving through 
a non-simply-connected force-free region. The generic phenomenon of this type is the 
Aharonov-Bohm (AB) effect, which is due to the presence of a vector potential in the 
Hamiltonian of the particle [l]. One of the most wonderful demonstrations of the AB 
effect is the persistent current in a mesoscopic normal-metal ring threaded by magnetic 
flux Q’AB = $ A  . dl [Z,3]. In this case, the persistent current itself also produces 
magnetic flux, in addition to the externally applied flux, and the possibility of a self- 
sustained (or spontaneous) persistent current for many-fermion systems was recently pointed 
out [4]. Interestingly, Aharonov and Casher (AC) [5] suggest that a neutral particle with a 
magnetic moment p may exhibit a topological force-free interference effect, as a result of 
an interaction with a charged wire. Consequently, the AEI effect admits an electromagnetic 
duality. This AC effect was discussed for a fluxon in type-Il superconductors 161 and 
a vortex in Josephson-junction arrays [7,8]. In addition, based upon a similar idea for 
the spontaneous A 8  effect, an interesting spontaneous AC effect, due to the many-body 
effect in one-dimensional (ID) mesoscopic normal-metal rings [9, IO] and Josephson-junction 
arrays [ 9 ] ,  was recently investigated. In particular, it is noteworthy that the previously 
mentioned fluxon (or vortex) in type-I1 superconductors (or Josephson-junction mays) can 
be treated as a standard neutral hard-core boson with given mass and magnetic moment 
when its essential nature is addressed. On the other hand, the hard-core boson spectrum 
is identical to that of a non-interacting one-component fermion, up to the parity of a finite 
particle number N. Such finite-size effects are of great importance in mesoscopic systems. 
In view of these considerations, it seems desirable to investigate, in detail, the parity effects 
due to evenness and oddness of N. In this paper, by extending Lieb and Liniger’s (LL) 
Bose gas analysis [ l l ]  to many hard-core bosons confined to a 1D mesoscopic ring pierced 
by a charged rod, and with particular emphasis on the parity effects, we shall calculate the 
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total energy and the corresponding persistent fluxon current, which are of primary interest 
here. More importantly, it is demonstrated exactly that, in the absence of the external A c  
flux, whether a self-sustained fluxon current exists depends only upon whether the boundary 
condition is antiperiodic or not. 

In the presence of an AC flux, the mechanical momentum of a boson with magnetic 
moment p is given by p-E xp /c ,  where E is the electric field IS]. It has been demonstrated 
that the interaction term E x p/c, although appearing as a local interaction, represents a 
don-local interaction, and the AC effect is essentially non-local in its nature [6]. Therefare, 
we are able to work with a gauge in which the field does not appear explicitly in the 
Hamiltonian for many bosons, but enters the calculation via the flux-modified boundary 
condition. The Schradinger equation for N bosons, which are confined to a ID ring with 
radius R, vanishingly small width a and thickness I ,  and interact via a &function potential, 
can be written as 

where 2y is the amplitude of the 6 function. The wavefunction Y satisfies the flux-modified 
boundary conditions in each variable, which reads in part: 

W(xl +L,xZ, ... rXN) =exp(i2irfAC)W(xl,xZ, . . . , x N )  (2) 

with a similar condition for the derivatives. In equation (Z), f ~ c  = @AC/@O with 
QAc = ( p / e ) $ i  . (dl x E )  and @O = hc/e. Following LL'S analysis, we can easily 
find the Bethe ansatz (BA) [12] consistency conditions. To ensure that the BA wavefunction 

is an exact solution of equation (l), the phases 6, must read: 

6, = -Ztan-'[(fi2/2my)(k, - kj)] (4) 

The phases 6*, are related to the prefactors Q ( P ) .  When y = CO, we have the hard-core 
boson case in which we are interested and all the 6's are zero so that equation (5) leads to 

k = (2rr/L)(n + fAC) for odd N 
= (Zn/L)(n + fa + f )  for even N 

where n = 0, f l ,  1 2 , .  , . , and fAC is in the range [-+, a). It can be seen from equation (6) 
that the spectrum of hard-core bosons being identical to that of non-interacting one- 
component fermions is true only for finite N, since N is odd. Bearing this fact in mind, 
we can perform the calculations for the physical quantities as in the case of non-interacting 
one-component fermions. Therefore, the total energy of N particles can be written as 
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Substituting equation (6) into equation (7), we obtain the energy of the ground state: 

for N = 2 4  + 1 with no = 0.1,. . . , and 

for N = 2no with no = 1,2 , .  . . . 
There is a close connection between the states of a fermion-like particle in a loop and 

the one-dimensional Bloch problem, as seen by identifying 27t0Ac/00 and k ( 2 r R )  with k 
as the wavevector [13-151. The energy levels of the ring form microbands as a function of 
@AC with the period 00 analogous to the Bloch bands in the extended k-zone picture. The 
fluxon current carried by the nth level is 

where 4 is the magnetic flux carried by each hard-core boson. At zero temperature, the 
fluxon current in the ring for a fixed number of hard-core bosons N should be the sum over 
the individual contribution from each occupied state, i.e. 

Clearly, at T = 0 K. the fluxon current is a piecewise periodic function of the AC flux. In 
each periodic region, I varies linearly with QIAc, and there are discontinuous jumps when 
one period @O is over. 

At this stage, we wish to point out that the AC flux @AC, which drives the persistent 
current I, is the sum of the externally applied and the flux @,, induced by the persistent 
current itself, @AC = + 0,. This raises the possibility of a spontaneous AC effect in 
the absence of the externally applied flux Out. It is well known that an electric field E, 

is essentially induced when a particle carrying a magnetic flux 4 moves with velocity U,. 
According to Faraday’s law: 

1 ab v x E, = --- 
c at 

we can obtain E. = b x v./c = (27rR/@c)b x In+ with b = #/ (2xRa) ,  as the effective 
fluxon density of an individual particle. The total electric field generated by the fluxon 
current inside the ring can easily be obtained 

where P is the unit vector of radial component. The induced A c  flux is then found to be 
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Here we have used /.L = 41/4rr with 1 as the effective length of the flux line. In the absence 
of the external AC flux, equations (11) and (13) lead to a selfsonsistent solution 

On the other hand, the total energy of the whole system consists of two parts: the energy 
of particles in the ring E and the energy of the electric field E t ,  i.e. ET = E + E t ,  where 

It is obvious that the total energy ET reaches its minimum just at fAc = f?; = 0, i.e. 

which implies that the stable ground state of the system does not carry the spontaneous 
fluxon current via the AC effect, regardless of whether the number of hard-core bosons N 
is even or odd. 

It is worthwhile comparing these results for hard-core boson systems with those for 
orher systems. 

(i) For normal free bosons, all of them occupy the lowest energy level with zero 
momentum at zero temperature, and the introduction of a small AC phase will make the 
energy of the system higher. Therefore, a spontaneous AC effect should not exist in the 
normal free-boson systems. 

(ii) In mesoscopic rings comprised of polarized spin-; free fermions, the spontaneous 
AC effect could exist with an euen number of particles because of the pairwise cancellation 
of the currents in the states with fn [4]. 

(iii) In the systems we are discussing, although the behaviour of hard-core bosons is 
fermion-like, once, however. the periodic boundary condition on the wavefunction is chosen, 
it is the parity dependence of the pseudo-wavevector k that kills the spontaneous A c  effect. 

(iv) It is interesting to notice that, if we choose the antiperiodic boundary condition 
in the absence of the AC flux, Y(XI -!- L, ~ 2 , .  . . I X N )  = -Y (x~ ,  x2, . . . , X N ) ,  which is not 
unreasonable when we insert a ?r-phase-shift junction in the ring, we can easily find a 
ground state with a spontaneous AC flux 

(16) 

which may be observable. 
For a large, but not infinite, interaction strength y .  by performing the perturbation 

treatment on equation (4) to the first order in (l/y), it has been found that the energy 
spectrum is merely scaled by a factor (1 + Nh’/myL)-’, and all the conclusions mentioned 
above do not change. For a finite y .  the situation becomes complicated and needs further 
investigation. 

Finally, it may be constructive to make some remarks concerning the experimental 
relevance of the AC effect in ID hard-core boson systems. Consider an annular type11 
superconducting sample in the dilute mixed state with U - I - f with the external magnetic 
field applied along the z-axis, where I and 6 are the penetration and the superconducting 
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coherence lengths, respectively. This setup ensures that the physical system effectively 
behaves one-dimensionally and exhibits the discussed AC effect. In  the ideal case, and 
at very low temperature, the possible maximum signal of the radial voltage due to the 
spontaneous AC effect is roughly estimated as 

if R - 10 p n  and 1 - 10h are chosen, which may be observable. Therefore, the results 
presented here provide a strong motivation to design and carry out such measurements of 
the AC effect. 

The authors would like to acknowledge Professor Jinming Dong for helpful discussions. 
This work was supported by a RGC grant of Hong Kong and a CRCG research grant at the 
University of Hong Kong. 
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